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Bifurcation in an Elastic Plate on a Rigid Substrate

by

R.S. Rivlin

Lehigh University, Bethlehem, Pa.

Abstract

An infinite plate of- neo-Hookean elastic material is

bonded on one face to a rigid substrate. It is subjected to

a uniform shear and dead-loaded with a uniform thrust. A

periodic bifurcation solution is obtained when the thrust per

unit area exceeds a critical value. The relation between the

wave-length, thrust, amount of shear and plate thickness is

obtained.
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1. Introduction

In this paper we consider the critical loading conditions

for which a bifurcation solution is obtained when an infinite

plate of incompressible isotropic neo-Hookean elastic material,

bonded on one face to a rigid substrate, is subjected to a

uniform shear of amount K and simultaneously dead-loaded on

the other face by a uniform normal thrust.

We suppose that an infinitesimal spatially periodic defor-

mation is superposed. A secular equation is obtained for the

determination of the wave-length of the superposed deformation.

This secular equation yields a real value for the wave-length

when some critical value of the normal thrust per unit area,

which depends slightly on K , and is approximately equal to

twice the shear modulus, is reached. For this critical value

of the thrust, the wave-length of the infinitesimal superposed

deformation is zero and, as the thrust is increased beyond this

value, K remaining fixed, the wave-length increases.

Except at values of the thrust per unit a:ea near the

critical value, the wave-length is proportional to the square

root of the thrust per unit area and is nearly independent of

K . At values of the thrust near the critical value, the wave-

length ber.oe ei ly sensitive to the thrust. At all

values'of th th.us". I of K , the wave-length is propor-

tional to the-thickness of the plate, as may be expected from

dimensional considerations.

For'specified values of the thickness and of the thrust

per unit area, beyond the critical value of the latter, a

periodic staticibifurcation solution is obtained with uniquely
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determined wave-length. However, if the plate were finite in

the direction of the periodicity, the end conditions would en-

able us to determine the spectrum of values of the wave-length,

and hence of the thrust per unit area, at which the bifurcation

solution can occur.

-t
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2. Basic equations

We consider a flat plate of incompressible isotropic neo-

Hookean elastic material of thickness h to be located with

its major surfaces normal to the 2-axis of a rectangular Cartesian

coordinate system x . The dimensions of the plate in the 1 and

3 directions are supposed large compared with h

Let be the vector position of a generic particle of the

plate in its undeformed state and let C (a-l,2,3) be the com-

ponents of in the system x . We suppose that initially the

plate is located with its major surfaces in the planes 2 = 0

and a h and that the face - 0 is bonded to a rigid

plate which remains fixed in space.

Suppose the elastic plate undergoes a deformation in which

a particle initially at moves to vector position x with

components xi(i-l,2,3) in the system x . Then, the strain-

energy W per unit volume is given, in appropriately chosen

units, by

W = (xi,axia-3) 2.1)

where ,a is used to denote differentiation with respect to

The Piola-Kirchhoff stress , referred to the system x

is given by

-1-

Hi = xi,a" P-ijkayxj, Xk,y (2.2)

where rijk denotes the alternating symbol and P is an arbi-

trary hydrostatic pressure. Since the material considered is

.V..
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incompressible

detlxi, - 1 . (2.3)

We now suppose that the deformation * x is the resul-

tant of a finite deformation * X and an infinitesimal defor-

mation X - x, where

x - X + Cu (2.4)

and c is a small parameter. We assume that the force system

associated with the deformation E * x differs by terms of

order e from that associated with the deformation C * X

We accordingly write

H"ci ai + eirn , P - P + P" (2.5)

Then, from (2.2) we obtain, with (2.4) and (2.5),

1I M . 1 Peij x
ai = a Ti,a k2aO j, k,,

ai M ui'a "T CijkF-aoyP(k,yUj" + Xj,oUk,T)

+ PXj,Xk, (2.6)

*Similarly from (2.3) we have

detIXi, at " 1 k'a6Yi,aXj,Uk,y - 0 . (2.7)



The Piola-Kirchhoff equations of equilibrium yield

0I - and i. -0. (2.8)
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3. The governing equations

If the deformation C - X is a simple shear of amount K ,

for which the direction of shear is the 1-direction and the

plane of shear is the 12-plane, then

X1 M E+ K&2  X2 = E2 X3 " E3 (3.1)

We shall assume that the superposed infinitesimal deformation

X x is a plane deformation in the 12-plane. We can then write

u1 ( I, 2 ) , U2 - U2 (clo 2 ) , U3 - 0 . (3.2)

With (3.1) equation (2.7)1 is automatically satisfied and

with (3.1) and (3.2) equation (2.7) 2 yields

U1,1 + U - Ku - 0 . (3.3)
u,1 2,2  2,1

Also, with (3.1), (3.2) and (3.3) equations (2.6) yield

H11 a *22 " =33 a 1 - P , H12 - KP , i21 - K,

(3.4)

H31 - H 1 3 - H 2 3 - 132 a 0

and

w1 a 1 ,1 -Pu 2, 2 - P '22 2,2 PU1 ,1- P 33

(3.S)
w12"U2, I+Pu , 2+PK W21'U, v2+Pu 2 ,1, w 31w 13-f 23MW320 0.
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With (3.4), equation (2.8), implies that P is constant.

With (3.5), the incremental equation of equilibrium (2.8)2

yields

1,11 1,22 a 1 , ,22+ Kp 1 p92 0 P'3 0. (3.6)

The last of these equations implies that p - p(&lP2)

From (3.3) it follows that there exists a function

*C 1, 2) in terms of which we may express it, u2  by the

relations

u, *" 2 - K*, 1 , u2  * , • (3.7)

By substituting (3.7) in (3.6)1,, and eliminating p , we obtain

V 2[(1+K2)-11 + K22 - 2*0, 1 2] - 0 , (3.8)

where

V 2 (3.9)

We shall obtain solutions of (3.8) which are sinusoidal

in the 1-direction. Accordingly, with the usual complex nota-

tion, we write

$ *(& 2 )e 1 (3.10)

where k is a constant. Introducing (3.10) into (3.8), we

obtain
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20 2i 3K k4(1+K2)#

2kK k 2 (2+K2 )f + 21kKO + k, (3.11)

where the prime denotes differentiation with respect to C2

Equation (3.11) has the general solution

A 1 aAe , (3.12)
A-1

where the a's are (complex) constants and the a's are given

by

a k, a2 = -k , a k(l+tK) , a4 = k(-l+lK)

(3.13)

With (3.10) and (3.12), we obtain from (3.7)

u = e (aA - ikK)aAeA2
AwI (3.14)

2 -kek aAeA
Awi

With (3.14), equations (3.6) yield

PA = etk 1  (al"k2) (mA-kK)aAeA2
A-I

(3.15)

e k& I ( C -k2)[-tk(l+K 2) + KaAlaAetAs 2

These equations yield

a Itk91 2_ (. 2 )  t AeA 2

p " - r • = k(A- Ae + constant . (3.16)
Awl



10.

With (3.14) and (3.16), we obtain from (3.5)

ikl I ( ( ._2  oK1} aAe4AA2

W11 = e 1 A (ik +cA(P + K(3.17)

A-i k

2

+ kZ(1+K2 ) 4 o2_(P-K 2 ) aAe ,
'k~~l J _ ~ a

e2 = k~ 4 xkK PA+ +(c & (k.17.

AI

2 A 2
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4. Solution of the secular equation

In this section we shall assume that the surface conditions

on the surface 2 - h are dead-loading conditions. Accordingly,

22 1y-h = 21 k,2= h - . (4.1)

On the surface 2 = 0 , we have

u = o = u- 0 (4.2)

Introducing (3.14) into (4.2), we obtain

'4 i4
A- (aA-l kK)aA 0 0 , aA 0 (4.3)

Again introducing (3.17)2,4 into (4.1), we obtain

'4 '4
I BAaA w 0 , CAaA - 0 , (4.4)

A-I Awi

where

2

B A - (kA(2+P- aA+ K(a.k 2 k 2 P) eaAh

i7 Cli(4.5)

CA" (-tkKaA + a+k2P)eA

The necessary and sufficient condition for (4.3) and

(4.4) to have a non-trivial solution for aA is
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1 a2 a3 1L4

B1  B2  B C

With the expressions (4.S) for B A and CA ,the secular

equation (4.6) can be rewritten (see Appendix) as

Q+ Z2 Q + 83a 0 ,(4.7)

where

-, = K+4)-(K csh2i + 4cos Kp)

82 = 2K2 (cosh2u-cos Kui) , (4.8)

83 m-K2 [(K2+4) + K2cosh2u + 4cos Ku)]

with

ui - kh .(4.9)

From (4.7), Q is given by

Q - A ( 2 _ 0 08"} (4.10)

We note from (4.8) that
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2 - K 2 2

82 -8IB3  (K2 +4)(K 2sinh 22-4sin2 Ku)

81 M -2(K2sinh -4sin2 KU) (4.11)

83 - 2K2(K2 cosh2 +4cos2 KU)

Since K2sinh 2 2p > 4sin2K for all K and U , it follows

from (4.10) and (4.11), that Q is real for all K and ui

Also, it is evident from (4.11)2,3 that B1 < 0 and B3 - 0

It follows that the negative alternative in (4.10) leads to a

negative value for Q . Since, from (3.4), the condition for

the normal traction on &2 - h to be a thrust is P > 1 , i.e.

Q > 2 , it follows that the negative alternative in (4.10)

corresponds to the normal traction on C 2 = h being tensile.

We rote also that 02 > 0 . Accordingly, the necessary

and sufficient condition that Q > 2, i.e. the normal traction

is a thrust, is

S-_0)k > -2B 1-B 2 . (4.12)

From (4.8) it follows that

20 1 2 * 2(K2+4)(l-cos Kv) . (4.13)

Accordingly, apart from the trivial case when cos KU - 1 ,

the inequality (4.12) is always satisfied by the positive alter-

native in (4.10). We conclude that this corresponds to the nor-

mal force on the surface C2 - h being a thrust. In the remain-

der of this paper we consider only this situation.
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In Fig.1 we plot from (4.10),with (4.8) and (4.11), the

values of the thrust N - P-l-Q-2 against u for K fixed.

The curve in Fig.1 was drawn for K - 0.4. However, the depen-

dence of N on K , for K in the range 0 to 0.4, is less

than 2%. It was found from the numbers from which the figure

was plotted that Q - 2 = 13.2/p 2  for u < 1

It is instructive to consider three limiting cases.

(a) p fixed, K -, 0.

From (4.8) it follows that

81 - 2K2(p2-sinh2p) + O(K )

2 4K2sinh2U + O(K) , (4.14)

03 = 8K
2 + O (K4)

With these expressions we obtain from (4.10)

2{sinh2p + (sinh 4p + sinh2V- P2)(}

sinh 2 0- U 2

In the limit u ., Q - 4.

In the limit u 0 , a-L(1+ 2)
2 VT

(b) K fixed, p .

From (4.8), it follows that, as p ,

i = " 2e 21U

12 a K2e 2 1  (4.16)

1 4 2U
03 .=K'e

- 1- -.
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Then, from (4.10), we obtain

Q - 2 + (K2+4)15 (4.17)

As K increases from 0 to 1 , increases from

4 to 4.236.

(c) K fixed, i 0.

From (4.8), we obtain, as u * 0

B1  -V1iIK2(K2+4) + 0u ) ,

82 - i2K2(K2 4) + O( 4) , (4.18)

03 2 2(K2 +4) + 0(u 2

Then, from (4.10), we obtain

Q A.,j) x 12.93/12 (4.19)

in agreement with the result obtained in case (a).

. II I -A
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5. Appendix

With the expressions (3.13) for aA , equation (4.6) can

be written as

(B C -BC I) + B23 3C 2 + (B3C -B4C 3 ) (BCCI-BIC)

+ .iK{ (B1 -B2 ) (C3 -C) - (C1-C2 )(B3 -B )} = 0 . (5.1)

Also, with (3.13) and the notation Q * 1 + P and i * kh

we obtain from (4.5)

B1 a k2 [K(1-Q)-tQ]eP

B2 = k2 [K(1-Q)+iQ]e
" ,

B3  -k 2 [tQ + K(l+ tK)]e( IltK)pL

B4 B= k 2[iQ-K(l-iK) ]e (I tK ) p

iC 1

C2 a k2 (Q.tK)e" ,

C3 = k2(QetK)e(IK)P,

C 4 k2 (QtK)e(1-tK)u

From (5.2) we obtain

B3C4 - B C3 - (B1C2 -B 2 C 1)e
2 1ku -2tk4fQ +(Q-1)K 2}e 2 k)i

BC 3 -BC 2  k (Q+tK){2iQ+K(1-Q) + K(l+iK)}exKtt (5.3)

B31C1 - B1CI 4 k (Q--LK){2Q-K(1-Q)-K(1-iK)le .

I
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Whence,

(B C3-B C) 4ABC1 BC 4(Q 2+K2 )e IKji (5.4)

We also obtain from (5.2)

(Bi- B2)(C3-CO - (Cl-C 2)(B3-BO

-k
1'{(QK(4-Q) + K3](eZu+e-2u) + 2K (Q2 +K 2) IeK (5.5)

With (5.3), (5.4) and (5.5), the secular equation (5.1) may

be rewritten as

-21Q2+(Q_1)K21(1+e 2tKu) + 4(Q 2+K2 )e IiU

7 {[Q(4-Q)+K I (eZ~1+e-2) + 2 (Q 2 K2 ) }et 0 0S

Prom this the relation (4.7) with (4.8) is easily obtained.
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